Putting x = r cos
q and y = r sin Now r2 = 25 \ r ± 5 which represents a circle having centre at (0,0) and
radius 5.
2x + y = 0, Putting x = r cos q and y = r sin q , we get 2(r cos q) + r sin q = 0
x2 + y2 - 2ax = 0, Putting x = r cos
q and y = r sin q we get,
r2 cos2 q + r2 sin2 q = 0
\ r2(cos2 q) = r (2a cos q)
\ r2 = r (2a cos q)
\ r = 2a cos q which is a circle of radius "2a", passing through (0,0) and centre (2a, 0) on the polar axis.
x2 + y2 - 2by = 0, putting x = r cos q, y = r sin q
\ r2(cos2 q + sin2
q) - 2b (r sin q) = 0
\ r2(1) = r (2b sin q) : \ r = 2b sin q
which is a circle with radius '2b' and centre
at (0, 2b), lies on the ^ar line through pole (0, 0) to the polar axis.
x2 - y2 = 4, putting x = r cos q, y = r sin q
\ (r2 cos2 q) - (r2
sin2 q) = 4
\ r2(cos2 q - sin2 q) = 4
\ r2 cos2q = 4 which is a rectangular Hyperbola.
x2 + y2 = 4x, putting x = r cos q, y = r sin q
\ r2 (cos2q + sin2 q) = 4 (r cos
q)
\ r = 4 cos q which is a circle having centre (4, 0) on the polar axis which passes through (0, 0)
x3 + xy2 + 6x2 - 2y2 = 0, putting x = r cos
q, y = r sin q
x (x2 + y2) + 6x2 - 2y2 = 0
\ r cos q (r2) + 6 r2 cos2 q - 2r2 sin2 q = 0
\ r cos q + 6
cos2 q - 2 sin2 q = 0
\ r cos q = 2
sin2 q - 6 cos2 q \ r cos q = 2 - 8 cos2 q
\ r = 2 sec q - 8 cos q
\ r = 2 (sec q - 4 cos q)