free booknotes online

Help / FAQ


Example 10

Show that

Solution

Note that with 1 are nothing but the cube roots of unity (i.e. 1).

They are denoted by w, w2, 1 and they are related by a relation 1 + w + w2 = 0

Example 11

(a) Find the value of x3 + 2x2 - 3x + 5 if x =

Solution

\    x = 1 + 2i x - 1 = 2i . squaring both sides we get

(x - 1)2 = (2i)2 i.e. x2- 2x + 1 = 4i2 \ x2 - 2x + 1 = - 4 \ x2 - 2x + 5 = 0

By division algorithm, Dividend = (Divisor) (Quotient) + Remainder

\ x3 + 2x2 - 3x + 5     =     ( x2 - 2x + 5) (x + 4) - 15
                                   = (0) (x + 4) - 15
                                   = -15

(b) Find the value of x4 - 4x3 + 6x2 - 3x + 66 if x = 3 + 2i

Solution

x = 3 + 2i     x - 3 = 2i

Squaring both the sides , x2 - 6x + 9 = -4 i.e. x2 - 6x + 13 = 0

x2 + 2x + 5

\ x4 - 4x3 + 6x2 - 3x + 66   =  (x2 - 6x + 9) ( x2 + 2x + 5) + (x + 1)
                                            = (0) (x2 + 2x + 5) + ( 3+ 2i + 1)
                                            = 4 + 2i

Example 12

Find the modulus and argument of (-1 + i)

Solution

Let a + bi = -1 + i Þ a = -1 and b = 1

then modulus of (-1 + i) =    2 units

and the amplitude q = tan-1(b /a) = tan-1 (1 / -1) = 1350 or

Example 13

Find the modulus and amplitude of (1 - cos a) + j sin a

Solution
Let a + bi = (1 - cos a) + j sin a and express in the polar form.

\ a = (1 - cos a) = 2 sin2 (a / 2) and b = sina = 2 sin (a / 2) cos (a /2)

 \    Modulus is 2 sin (a / 2)

Also,

cos q = = sin (a / 2)
and
sin q = = cos (a/2)

\ case (1) If sin a / 2 ³ 0 then

z = a + bi = 2 sin a/ 2 (sin a / 2 + j cos a/2 )
.... using z = r (cos q + j sin q)

case (ii) If sin a / 2 < 0 then

z = 2 sin (a/2) - sin (a / 2) - j cos (a / 2 ) = - 2 sin (a/2)

[next page]

Index

8.1 Geometry of complex numbers
8.2 De - Moivres's theorem
8.3 Roots of complex numbers
8.4 Cirsular functions of complex angles & hyperbolic function
Supplementary Problems

Chapter 9

All Contents Copyright © All rights reserved.
Further Distribution Is Strictly Prohibited.


Search:
Keywords:
In Association with Amazon.com