SUPPLEMENTARY PROBLEMS
1. Prove the following
- =
2 cosec A
- sec6A - tan 6A = 1 + 3tan2A
+ 3 tan4A
- (1+ sin + cos
)
2 = 2 (1 + sin )
(1 + cos )
- sin 6 +
cos6 =
1 - 3cos2
+ 3 cos4
- sin x ( cot x + 3 ) ( 3 cot x + 1 ) = 3 cosec x + 10 cos x
- If x = a cos2
+ b sin2
prove that (x- a ) (b - x ) = ( a - b )2 sin2
cos2
- If sin =
Find cos and cot
- ( sin - cos
) ( sin + cos
) = - cos2
- (tan2A - cot A)2= tan 4A -
2 tan 2A cot A + cot2A
- sec - sec
sin2 =
cos
- tan A sin A + cot
A cos A = ( sec A
+ cosec A) (sec A.
cosec A - 1) . sin A cos A
-
-
2. Verify the identity.
-
-
-
-
- tan - csc sec
( 1 - cos2)
= cot
- (x sin - y cos
)2 + (x
cos + y sin
) = x2+ y2
-
3. Find the values of t- ratios of ,
given that tan = 5/4
Ans. Quad. I:-
Quad III:-
4.
- Prove that
- Prove that
- Prove that
- Prove that cos 2250 x cos 6750 + sin
5850
sin 3150 = 0
- Evaluate
- Prove that sin 200 sin 400sin 600sin
80 0 = 3/6 ( Don't use calculator or table)
- Show that sin a sin (60 0 - a) sin ( 600
+ a) = 1/4 sin 3a
- Prove that
- Prove that
- 1) If sin 3a = 0.4 Find cos 3a
2) Find sin a if
tan a /2 = 1/
- Prove that (cos A - cos B) 2 + (sin A - sin B)2
= 4 sin 2
- If A + B + C = 180 0 Prove that cos A+ cos B - cos
C = 4 cos A/2 cos B/2 sin C/2 -1
- When A + B + C = 1800, show that sin 2A + sin 2B
+ sin 2C = 4 sin A . sin B sin C
5. Find the values of sin (a
+ b), cos (a
+ b) and tan (a
+ b), given
- sin a = 8/17, tan b=
5/12 a , and b
in Quad I.
Ans. 171/221, 140/221, -63/16
- sin a = 1/3, sin b
= 2 /5, a in Quad I b
in Quad II,
Ans.
6. Find the values of sin ( a
- b ) , cos (a
- b) and tan (a
- b ) given
- cos a = -12/13 , cot b
= 24/7, a in Quad. II, b
in Quad I
Ans. 204/325, -253/325, 21/220
- sin a = 1/3, sin = 2/5, a
in Quad. II, b in Quad I
Ans.
7. Prove that tan (450+ q)
=
- sin (a + b)
sin (a - b)
) = sin2a - sin2b)
and sin (a + b)
) sin (a -b)
) = cos2b - cos2a
- sin 500 - cos 80 0 =
cos 700
- sin 400 - cos 700 =
cos 800
- cos 200 cos 400 cos 600 cos
800 = 1 / 16
-
- sin 750 - cos 150 = cos 1050
+ sin 150
- cos2x + cos2(x +1200) + cos2(x
- 1200) = 3/2.
8. Find the values of sin 2 ,
cos 2 and tan 2
; given
- sin = 3/5,
is in Quad. I
Ans. 24/25, 7/25, 24/7
- tan = - 1/5,
is in Quad. II
Ans. - 6/13, 12/13, - 5/12
- Prove that
2 using x=300
- Prove that
using A = 600
9. Find the maximum and minimum value of each sum
and value of x or t between 0
x or t 1800
- 4 cos x + 3 sin x into the form (sin (x-a))
Ans. max. 5 when x = 36 0 22'
min -5 when x = 216 0 52'
- 5 cos 3t + 12 sin 3t into the form cos (3t - a)
Ans . max 13 when t = 220 38'
min -13 when t = 82038'
*******
[next page]
|
Index
Trignometric
Identities
4.1
Fundamental Identities
4.2
The addition formulas
4.3 The multiple-angle (Double
& Half angle) formulas
4.4 Tangent Identities
4.5 Factorization & Defactorization
Supplementary Problems
Chapter
5
|