| SUPPLEMENTARY PROBLEMS  
              
             (1) Simplify the following 
              
              (i) (5 - 9i) ( 7/2 - 5/2i) (ii) 4 - Ö 
              - 9 ) ( - 2 + Ö 27 )   (iii) (2 + 5i)3    Ans :- (i) 1/2 - 9/2i (ii) ( - 8 + 9 Ö 
              3 ) + (6 + 2 Ö 3 ) i (iii) - 142 
              - 65i (iv) (24 / 13) i (v) 1 / 2 . 
              
             (2) Express the following in the form a + i b, a, b Î R and 
              i =  Ö-1   (3) (a) If  show that   (b) Show that  is a cube root of unity.        (vii) Solve 3x2 + 2x + 1 = 0 
              
              Ans :-    
              (viii) Solve 2x2 + 3ix + 2 = 0 
              
              Ans :- x = -2i, (1/2) i 
              
              (ix) Solve ( 3 c is 410) (2 c is197) = 6 c is 2380 
               where c is q = cosq 
              + sin (Sketch it graphically). 
              
              (x) Sketch    
              (xi) Compute  directly. Change into trigonometric form. and then recompute .  (xii) Find all solutions to x6 = Ö 
              3 - i
  
              Ans :- 1.11819 - 0.0078290i, 0.643818 + 0.96946i, -0.474373 + 
              1.01730 i, 
              1.11819 + 0.0978290i, -0.643818 -0.919467i and 0.474373 - 1.01730i 
             5. Express in the Polar form :- 
              (i) 3 + 3i 
              Ans :- 3  Ö 3 (cos 450 
              + sin 450 ) 
             (ii) - 4 - 3i
  Ans :- 5 (cos 2160 52' + i sin 2160  52') 
              
              (iii) - 12 + 5i = 13 (cos 1570 23' + i sin 1570 
              23') 
              
              (iv) - 2i = 2 (cos 2700 + i sin 2700) 
              
             6. Use DeMoivre's Theorem to evaluate :- 
              
             (i) ( Ö 3 / 2 i / 2 ) 9  
              Ans : - i 
              
              (ii) (1 + i)8 Ans :- 16 
              
              (iii) (3 + 4i)4 Ans : - 526.9 - 336. 1 i 
              
              (iv) (1/ 2 - i Ö 3 / 2) 
              20  Ans :- - 1/2 - i  Ö 3 
              / 2 
              
               Ans :- 1 - i  
              
                 
              
              
             ********** 
              
              
             [next page] |