- Let the two numbers be a and b.
a + b = 2 (a - b)
a + b = 2a - 2b
3b = a
but b= 10
a = 30
Ans : E
- The given expression is
Ans : C
- n (A È B) = n(A) + n(B) - n(A Ç B)
But u = n (A È B) + n (A È B)’
n ( A È B) = 42 + 45 - 22
n (A È B) = 65
85 = 65 + n (A È B)’
n (A È B)’ = 20
Ans : B
-
Since the letters represent consecutive integers, moving backwards from f to b
one gets 4 units.
\ f - b = 6 - 2 = 4
Ans : B
-
Since the letters represent consecutive integers, the sum c + d + g = 3c + 5
\ c + d + g = c + c + 1 + c + 4
= 3c + 5
Ans : A
-

Since the letters represent consecutive integers, consider
b = a + 1, c = a + 2, and d = c + 1
To find d2 - b2
Substituting the values of d as (c + 1) and b as (a + 1)
(c + 1)2 - (a + 1)2 = c2 + 2c + 1 - a2 - 2a - 1
= c2 - a2 + 2 ( c - a)
= 24 + 2 ( c - a) [Since c2 - a2 = 24]
But c = a + 2
\ d2 - b2 = 28
Ans : E
-
Ans : C
[next page]
|
Index
Test 3
Section 1: Verbal Reasoning
Section 2: Mathematical Reasoning
Section 3: Verbal Reasoning
Section 4: Mathematical Reasoning
Section 5: Reading Comprehension
Section 6: Mathematical Reasoning
Section 7: Mathematical Reasoning
Answer Key To Test 3
Answer Explanation To Test 3
Section 1: Verbal Reasoning
Section 2: Mathematical Reasoning
Section 3: Verbal Reasoning
Section 4: Mathematical Reasoning
Section 5: Reading Comprehension
Section 6: Mathematical Reasoning
Section 7: Mathematical Reasoning
Test 4 |