free booknotes online

Help / FAQ




Win a $1000 or more Scholarship to college!


Please Take our User Survey


Example 1

LMNO is a parallelogram such that m Ð LON = 300 and l (seg.LO) = 12 cm. If seg.MP is the perpendicular distance between seg.LM and seg.ON , find l (seg.MP).

Solution :

l (seg.MP) = 6

Since m Ð LON = m Ð MNP = 300

D MNP is a 300 - 600 - 900 triangle

\ l (seg.MP) = l (seg.MN)

l (seg.MN) = l (seg.LO) = 12 cm

\ l seg.MP = ´ 12 cm

= 6 cm.

Example 2

D PQR is an acute triangle seg.PS is perpendicular to seg.QR and seg.PT bisects QR.

Prove that    l (seg.PR)2 + l (seg.PQ)2   =   l (seg.PT)2 + l (seg.QT)2

Solution :

To prove that   l (seg.PR)2 + l (seg.PQ)2 = l (seg.PT)2 + l (seg.QT)2

In D PRS, by Pythagoras theorem

l (seg.PR)2 = l (seg.PS)2 + l (seg.SR)2

        = l (seg.PS)2 + [ l (seg.ST) + l (seg.TR) ]2

        = l (seg.PS)2 + l (seg.ST)2+ 2 l (seg.ST )
          ´ l (seg.TR) + l (seg.TR) 2 ®(1)

In D PQS, by Pythagoras theorem

l (seg.PQ)2 = l (seg.PS)2 + l (seg.QS)2

        = l (seg.PS)2 + [ l (seg.QT) + l (seg.ST) ]2

        = l (seg.PS)2 + l (seg.QT)2 + 2 l (seg.QT)
          ´ l (seg.ST) + l (seg.ST)2 ®(2)

From (1) and (2)

l (seg.PR)2 + l (seg.PQ)2

      = l (seg.PS)2 + l (seg.ST)2 + 2 l (seg.ST) ´ l
         (seg.TR) + l (seg.TR)2 + l (seg.PS)2
         + l (seg.QT)2 - 2 l (seg.QT)
        ´ l (seg.ST) + l (seg.ST)2.

Since l (seg.QT) = l (seg.TR)

l (seg.PR)2 + l (seg.PQ)2

= 2 l (seg.PS)2 + 2 l (seg.ST)2 + l (seg.QT)2 + 2 l (seg.ST) ´
   l (seg.QT) - 2 l (seg.ST) ´ l (seg.QT)

= 2 l (seg.PS)2 + 2 l (seg.ST)2 + 2 l (seg.QT)2

= 2 { l (seg.PS)2 + l (seg.ST)2 } + 2 l (seg.QT)2

= 2 l (seg.PT)2 + 2 l (seg.QT)2

**********

Index

6.1 The Right Triangle
6.2 The Theorem of Pythagoras
6.3 Special Right Triangles

Chapter 7

All Contents Copyright © All rights reserved.
Further Distribution Is Strictly Prohibited.


Search:
Keywords:
In Association with Amazon.com